Enteric pathways in the stomach.

نویسندگان

  • M Schemann
  • D Reiche
  • K Michel
چکیده

This report summarises the characteristics of target specific projection and neurochemical coding patterns of motor and interneuronal pathways in the gastric enteric nervous system (ENS) which are involved in the innervation of the mucosa, the circular and the longitudinal muscle. The pathways were identified by retrograde tracing and further characterised by optical and intracellular recordings of the synaptic activation of muscle motor neurones, and by recordings of pathway-specific muscle responses. All motor pathways had polarised projections consisting of ascending cholinergic and descending nitrergic populations. Thus, both muscle layers were innervated by excitatory and inhibitory motor neurones. Their projections indicated the presence of intrinsic circuits that mediate excitatory and inhibitory components of a peristaltic reflex and/or are involved in reflex mediated changes in gastric tone. Although polarised projections were also identified for interneuronal pathways, a substantial proportion of descending interneurones was cholinergic. Interneurones and longitudinal muscle motor pathways had longitudinal projection preferences whereas circular muscle motor pathways had circumferential projection preferences. Target-specific coding was primarily revealed for cholinergic populations; ChAT/ENK/+/-SP neurones projected to the muscle layers, ChAT/NPY/+/-VIP projected to the mucosa and ChAT/+/-SP/+/-5-HT/+/-Calret/+/-Calb were interneurones. Muscle strip recordings revealed the functional significance of ascending excitatory and descending inhibitory pathways to the circular muscle and the prominent influence of ascending and descending cholinergic interneurones which activated excitatory and inhibitory circular muscle motor neurones through nicotinic synapses. It is concluded that enteric pathways in the stomach have region specific features which reflect structural and functional adaptation of the gastric ENS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dev118422 331..342

In vertebrates, the digestive tract develops from a uniform structure where reciprocal epithelial-mesenchymal interactions pattern this complex organ into regions with specific morphologies and functions. Concomitant with these early patterning events, the primitive GI tract is colonized by the vagal enteric neural crest cells (vENCCs), a population of cells that will give rise to the enteric n...

متن کامل

Subpopulations of gastric myenteric neurons are differentially activated via distinct serotonin receptors: projection, neurochemical coding, and functional implications.

The enteric nervous system coordinates various gut functions. Functional studies suggested that neurotransmitters and neuromodulators, one of the most prominent among them being 5-HT, may act through a specific modulation of ascending and descending enteric pathways. However, it is still mostly unknown how particular components of enteric reflex circuits are controlled. This report describes ex...

متن کامل

Histogenesis of enteric ganglia in human fetal stomach

Introduction The Enteric nervous system (ENS) is a network which contains reflex circuits that detect the physiological condition of the gastrointestinal tract, integrate the information, and provide outputs to control gut motility, exocrine and endocrine secretions, microcirculation, immune and inflammatory processes. Elucidation of the mechanisms of ENS development and function allow the deve...

متن کامل

Fine tuning of virulence regulatory pathways in enteric bacteria in response to varying bile and oxygen concentrations in the gastrointestinal tract

After entering the gastrointestinal (GI) tract on the way to their physiological site of infection, enteric bacteria encounter a remarkable diversity in environmental conditions. There are gross differences in the physico-chemical parameters in different sections of the GI tract e.g. between the stomach, small intestine and large intestine. Furthermore, even within a certain anatomical site, th...

متن کامل

Neuronal activation of brain vagal-regulatory pathways and upper gut enteric plexuses by insulin hypoglycemia.

Neuronal activation of brain vagal-regulatory nuclei and gastric/duodenal enteric plexuses in response to insulin (2 U/kg, 2 h) hypoglycemia was studied in rats. Insulin hypoglycemia significantly induced Fos expression in the paraventricular nucleus of the hypothalamus, locus coeruleus, dorsal motor nucleus of the vagus (DMN), and nucleus tractus solitarii (NTS), as well as in the gastric/duod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Anatomical record

دوره 262 1  شماره 

صفحات  -

تاریخ انتشار 2001